

Improving pesticide-use data for the EU

To the Editor — Access to pesticide-use data is essential to accurately evaluate the adverse effects of pesticides on human and ecosystem health. In Europe, applicators are usually required to record the location and date of pesticide applications¹. A subset of these data is periodically sampled to produce heavily aggregated estimates of pesticide use, with spatial data reported to a national level. By contrast, in California all the data from applicators is reported in an openly accessible and highly temporally and spatially granular database². The Californian approach has enabled the location of endangered species exposed to spray drift³, the monitoring of surface water pollution⁴, the determination of honeybee pesticide exposure⁵ and the identification of health effects from residential exposures to pesticides⁶. Such analyses are not possible within the European Union.

The European Commission has proposed to reform the EU legal framework of statistics on agricultural input and output in February 20217. This reform was examined by rapporteurs from the European parliament and awaits a decision from the EU Committee on Agriculture and Rural Development. A main objective of this reform is to improve the high-quality European agricultural statistics "for policymakers, businesses and the general public to be able to take appropriate evidence-based decisions". As such, we recommend changes so that pesticide-use data can be incorporated into EU environmental and health risk assessments. The spatial scale at which data are reported must enable fine-scale granular analyses, ideally at the level of individual fields. Reporting should include products applied, adjuvants, active ingredients (including their concentration), rate and timing of application, target crop variety, and should be reported per application. Digital record submission could be used to minimize the workload on farmers, with additional options (for example, postal return) made available to maximize compliance. Since most farmers are already required to record these data, this should impose little additional burden. Data should be reported yearly with a short delay and should be standardized across the bloc. These data should be published as downloadable

whole datasets and have a user-friendly online interface. However, with an increase in transparency comes an associated cost to privacy. Explicit reporting of where controversial substances are used could open up pesticide users to targeted harassment.

Currently, scientists and authorities have to rely on farmers voluntarily reporting pesticide-use data to assess ecological impacts. Compared with an open access standardized database, this is time consuming and can produce low-quality and potentially biased data. If the proposed database were paired with long-term biodiversity monitoring, the relationship between pesticide use and ecosystem health could be determined⁸. This would allow for the identification of harm from specific pesticides using real-world populations, as has been done in California for amphibians⁹.

The regulatory regime in the EU has demonstrated a willingness to allow academic findings to play decisive roles in the approval process of pesticides, as evidenced by the ban on three neonicotinoids after academics raised concerns about their effects on pollinators^{10,11}. Access to high-quality pesticide-use data will help inform pesticide regulation and provide greater transparency¹². Improving the tracking of pesticide use would facilitate the European Green Deal objective of reducing pesticide use 50% by 2030 and promote a move towards a more sustainable agri-food system.

Robin Mesnage¹⁰, Edward A. Straw ^{□ 2,10} [∞], Michael N. Antoniou¹, Charles Benbrook³, Mark J. F. Brown D², Marie-Pierre Chauzat⁴, Robert Finger (D) Dave Goulson 6, Ellouise Leadbeater 2, Ana López-Ballesteros ¹, Niklas Möhring⁸, Peter Neumann ¹⁰, Dara Stanley ¹⁰ Jane C. Stout¹¹, Linzi J. Thompson 100 100, Christopher J. Topping 12, Blánaid White 13, Johann G. Zaller 1014 and Elena Zioga 1011 ¹Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK. ²Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK. 3Heartland Health Research Alliance,

Port Orchard, WA, USA. ⁴ANSES, Sophia Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, France, 5 Agricultural Economics and Policy Group, ETH Zürich, Zürich, Switzerland. ⁶School of Life Sciences, University of Sussex, Brighton, UK. 7BC3 — Basaue Centre for Climate Change, Scientific Campus of the University of Basque Country, Leioa, Spain. 8Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, France. 9Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland. 10 School of Agriculture and Food Science, University College Dublin, Dublin, Ireland. 11 Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland. ¹²Department of Ecoscience, Aarhus University, Aarhus, Denmark. 13School of Chemical Sciences, Glasnevin Campus, Dublin City University, Dublin, Ireland. 14Institute of Zoology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria. \boxtimes e-mail: robin.mesnage@kcl.ac.uk; edwardastraw@gmail.com

Published online: 14 October 2021 https://doi.org/10.1038/s41559-021-01574-1

References

- Eurostat. Office for Official Publications of the European Communities. (2008).
- Wilhoit, L. Managing and Analyzing Pesticide Use Data for Pest Management, Environmental Monitoring, Public Health, and Public Policy (ed. Zhang, M. et al.) (ACS Symposium Series 1283, American Chemical Society, 2018).
- Clemow, Y. H. et al. Integr. Environ. Assess. Manag. 14, 224–239 (2018).
- Wang, D., Singhasemanon, N. & Goh, K. S. Sci. Total Environ. 571, 332–341 (2016).
- Mullin, C. A., Fine, J. D., Reynolds, R. D. & Frazier, M. T. Front. Public Health 4, 92 (2016).
- Costello, S., Cockburn, M., Bronstein, J., Zhang, X. & Ritz, B. Am. J. Epidemiol. 129, 919–926 (2009).
- 7. European Commission. COM/2021/37 Final (2021); https://go.nature.com/3zQjbkV
- Mancini, F., Woodcock, B. A. & Isaac, N. J. B. Curr. Opin. Environ. Sci. Health 11, 53–58 (2020).
- 9. Davidson, C. Ecol. Appl. 14, 1892–1902 (2004).
- European Food Safety Authority. EFSA Supp. Publ. 15, 1378E (2018).
- 11. Goulson, D. Science 360, 973 (2018).
- 12. Möhring, N. et al. *Nat. Food* **1**, 535–540 (2020).

Competing interests

C.B. has participated in pesticide litigation in the US, which entailed analysis of pesticide-use data. The other authors declare no competing interests.

Additional information

Peer review information *Nature Ecology & Evolution* thanks the anonymous reviewers for their contribution to the peer review of this work.